4.5 Article

Partitioning of Convective and Radiative Heat Fluxes Absorbed by a Lumped Body Engulfed in a Diffusion Flame

期刊

FIRE TECHNOLOGY
卷 51, 期 4, 页码 801-822

出版社

SPRINGER
DOI: 10.1007/s10694-014-0412-7

关键词

Lumped body; Pool fire; Velocity; Partitioning; Convective heat flux; Radiative heat flux

向作者/读者索取更多资源

A simple model that divides the heat flux to the bodies engulfed in a diffusion flame into different components, namely radiation and convection is studied. Different sizes of brass and stainless steel (SS 304L) rods varying from 25.4 mm to 50.8 mm in length and 25.4 mm in diameter are used as specimens in this study. Experiments are conducted with each body inside a diesel pool fire of different diameters, namely 0.5 m, 0.7 m and 1.0 m. The temperature history of the body engulfed in a pool fire is measured to compute the thermal energy absorbed by the lumped body. Using an energy balance, the total energy is divided into three different components. The gas velocity in the flame is measured to be 1.53 m/s to 1.79 m/s for the diesel pool fires of 0.5 m to 1.0 m in diameter. The dominant mode of heat transfer in this study is radiative in nature. This simple model is reasonably able to predict the heat flux incident on to the lumped bodies engulfed by diesel pool fires using the measured temperature history. A three dimensional formulation for an axi-symmetric pool fire of a measured flame shape, flame temperature and a gray flame absorption coefficient is employed to predict the temperature of the body engulfed in pool fires. This formulation has to be modified to capture the absolute temperature values of the flame.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据