4.2 Article

Correlations between pyrolysis combustion flow calorimetry and conventional flammability tests with halogen-free flame retardant polyolefin compounds

期刊

FIRE AND MATERIALS
卷 33, 期 1, 页码 33-50

出版社

WILEY
DOI: 10.1002/fam.980

关键词

halogen-free flame retardant; polyolefin; PCFC; pyrolysis combustion flow calorimeter; microscale combustion calorimeter; MCC; LOI; filler; cone calorimetry; time to peak heat release rate; flame spread

向作者/读者索取更多资源

Seven halogen-free flame retardant (FR) compounds were evaluated using pyrolysis combustion flow calorimetry (PCFC) and cone calorimetry. Performance of wires coated with the compounds was evaluated using industry standard flame tests. The results suggest that time to peak heat release rate (PHRR) and total heat released (THR) in cone calorimetry (and THR and temperature at PHRR in PCFC) be given more attention in FR compound evaluation. Results were analyzed using flame spread theory. As predicted, the lateral flame spread velocity was independent of PHRR and heat release capacity. However, no angular dependence of flame spread velocity was observed. Thus, the thermal theory of ignition and flame spread, which assumes that ignition at the flame front occurs at a particular flame and ignition temperature, provides little insight into the performance of the compounds. However, results are consistent with a heat release rate greater than about 66kW/m(2) during flame propagation for sustained ignition of insulated wires containing mineral fillers, in agreement with a critical heat release rate criterion for burning. Mineral fillers can reduce heat release rate below the threshold value by lowering the flaming combustion efficiency and fuel content. A rapid screening procedure using PCFC is suggested by logistic regression of the binary (burn/no-burn) results. Copyright (C) 2008 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据