4.6 Article

A fluid structure interaction study of a viscous mechanism for energy absorption in protective structural panels

期刊

FINITE ELEMENTS IN ANALYSIS AND DESIGN
卷 83, 期 -, 页码 22-32

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.finel.2014.01.005

关键词

Fluid-structure-interaction; Viscous; Dissipation; Blast; Panel

资金

  1. SBIR Grant from ONR [N00014-09-M-0355]

向作者/读者索取更多资源

Sandwich panels designed to resist blasts and high-velocity impacts usually dissipate most of the delivered energy through inelastic deformation of solids. A concept is explored in this study to improve the energy absorption of such structures by the addition of a viscous mechanism. The mechanism relies on the fact that when a viscous liquid is forced through narrow passages at high speeds, it undergoes high shear rates that cause viscous energy dissipation. A simple test specimen in the form of a steel tube with capillaries attached at both ends was chosen for study. Both empty and liquid-filled test specimens were subjected to experimental and simulated drop-weight impact tests and simulated blast load tests. Fluid structure interaction analyses in the form of Coupled-Eulerian-Lagrangian simulations were performed to assess the energy dissipated both by solid plastic deformation and liquid viscous dissipation in the drop-weight and blast simulations. The liquid flow speeds generated by the applied loads were found to be a critical factor in determining the contribution of the viscous mechanism. The moderate liquid flow speeds generated by the drop-weight impacts resulted in negligible viscous energy dissipation. The simulated blast loads generated much higher liquid flow speeds and as a result the viscous energy contribution to the total absorbed energy in the test specimens approached 30%. The viscosity of the liquid has a major effect on the fraction of energy absorbed in the form of viscous dissipation. Results of this study support the viability of the concept of viscous-assist for improving the ability of protective panels and structures to withstand high-speed impact and blast loads. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据