4.6 Article

Shape optimization of coronary artery stent based on a parametric model

期刊

FINITE ELEMENTS IN ANALYSIS AND DESIGN
卷 45, 期 6-7, 页码 468-475

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.finel.2009.01.001

关键词

Coronary artery stent; Balloon; Parametric model; FEA; Shape optimization; Large deformation

向作者/读者索取更多资源

The implantation of intravascular stent (IVS) is a kind of coronary angioplasty to restore the blood flow perfusion to the downstream of the heart muscle tissue. The superior mechanical properties of a stent guarantee the successful implantation. This paper intends to improve the mechanical properties of MAC STENT (TM) by utilizing optimization theory instead of the conventional trial-and-error approach. In order to achieve this goal, firstly, a reliable procedure of finite element analysis (FEA) is established based on a parametric geometric model. The FEA overcomes the difficulties due to nonlinearities such as elastoplasticity, large deformation, large strains and contact. It can simulate the stent's deformations during a loading scheme of three phases without any possible failures or irregularities. Secondly, a single objective function, which includes the main mechanical properties of stents, is proposed to replace the initial multi-objective function and then an optimization model is formulated. An optimal design of MAC-J09-3.0 stent is obtained after successful execution of the optimizing process using 41 loops. Its comprehensive mechanical properties are largely improved. It is concluded that the optimization theory is very useful and efficient in the studies of coronary artery stents, although the optimization task encounters many severe difficulties and requires extensive calculation. The result also shows that the single objective function proposed in this paper is practical. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据