4.7 Review

Influence of the soil physical environment on rice (Oryza sativa L.) response to drought stress and its implications for drought research

期刊

FIELD CROPS RESEARCH
卷 121, 期 3, 页码 303-310

出版社

ELSEVIER
DOI: 10.1016/j.fcr.2011.01.012

关键词

Drought stress; Genotype x environment interaction; Phenotyping; Quantitative trait loci; Rice; Root growth; Soil penetration resistance

类别

向作者/读者索取更多资源

Plant performance under drought stress is not solely defined by an inadequate water supply but by an interaction among many factors, including climatic, edaphic, and biological factors. An important interacting factor affecting root growth, and therefore the ability of a plant to access and take up water, is the soil physical environment. Soil penetration resistance can restrict, or even halt, root system growth. For rice, a soil penetration resistance of 1.4 MPa is sufficient to inhibit root system expansion. This review describes the effects of the soil physical environment on root growth and its interaction with drought stress. A large variation in soil penetration resistance exists among rainfed rice-growing areas of South and Southeast Asia and within experimental stations used for managed-drought field phenotyping. This variability may influence genotypic performance across experimental sites/countries and the response of crop genotypes to drought stress. A case study is presented in which differences in the soil physical environment may partially elucidate differences in experimental results between two field studies conducted at different locations. These results highlight the need for increased knowledge of environmental interactions to allow the outputs of genomics to increase drought tolerance at the field level. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据