4.5 Article

Gallium Arsenide (GaAs) Nanofibers by Electrospinning Technique as Future Energy Server Materials

期刊

FIBERS AND POLYMERS
卷 11, 期 3, 页码 384-390

出版社

KOREAN FIBER SOC
DOI: 10.1007/s12221-010-0384-2

关键词

Optical materials; Gallium arsenide; Nanostructured materials; Sol-gel processes; Semiconductors

资金

  1. Korean Ministry of Education, Science and Technology
  2. Ministry of Education, Science and Technology [20090093816]

向作者/读者索取更多资源

Gallium arsenide (GaAs) does have superior electronic properties compared with silicon. For instant, it has a higher saturated electron velocity and higher electron mobility. Weak mechanical properties and high production cost are the main drawbacks of this interesting semiconductor. In this study, we are introducing production of GaAs nanofibers by electrospinning methodology as a very low cost and yielding distinct product technique. In general, nano-fibrous shape is strongly improving the physical properties due to the high surface area to volume ratio of this nanostructure. The mechanical and environmental properties of the GaAs compound have been modified since GaAs nanofibers have been produced as a core inside a poly(vinyl alcohol) (PVA) shell. GaAs/PVA nanofibers were prepared by electrospinning of gallium nitrate/PVA solution in presence of arsenic vapor. The whole process was carried out in a closed hood equipped with nitrogen environment. FT-IR, XPS, TGA and UV-Vis spectroscopy analyses were utilized to confirm formation of GaAs compound. Transmission electron microscope (TEM) analysis has revealed that the synthesized GaAs compound is crystalline and does have nano-fibrous shape as a core inside PVA nanofibers. To precisely recommend the prepared GaAs nanofiber mats to be utilized in different applications, we have measured the electric conductivity and the band gap energies of the prepared nanofiber mats. Overall, the obtained results affirmed that the proposed strategy successfully remedied the drawbacks of the reported GaAs structures and did not affect the main physical properties of this important semiconductor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据