4.8 Article

Chemical and Phase Evolution of Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production

期刊

ACS NANO
卷 10, 期 1, 页码 624-632

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.5b05652

关键词

environmental transmission electron microscopy; molybdenum sulfide; hydrogen evolution; electrocatalysis; density functional theory

资金

  1. Center on Nanostructuring for Efficient Energy Conversion (CNEEC) at Stanford University, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001060]
  2. U.S. Department of Energy, Office of Basic Energy Sciences
  3. National Science Foundation Graduate Research Fellowship Program
  4. Stanford Graduate Fellowship

向作者/读者索取更多资源

Amorphous MoSx is a highly active, earth abundant catalyst for the electrochemical hydrogen evolution reaction. Previous studies have revealed that this material initially has a composition of MoS3, but after electrochemical activation, the surface is reduced to form an active phase resembling MoS2 in composition and chemical state. However, structural changes in the MoSx catalyst and the mechanism of the activation process remain poorly understood. In this study, we employ transmission electron microscopy (TEM) to image amorphous MoSx catalysts activated under two hydrogen-rich conditions: ex situ in an electrochemical cell and in situ in an environmental TEM. For the first time, we directly observe the formation of crystalline domains in the MoSx catalyst after both activation procedures as well as spatially localized changes in the chemical state detected via electron energy loss spectroscopy. Using density functional theory calculations, we investigate the mechanisms for this phase transformation and find that the presence of hydrogen is critical for enabling the restructuring process. Our results suggest that the surface of the amorphous MoSx catalyst is dynamic: while the initial catalyst activation forms the primary active surface of amorphous MoS2 continued transformation to the crystalline phase during electrochemical operation could contribute to catalyst deactivation. These results have important implications for the application of this highly active electrocatalyst for sustainable H-2 generation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据