4.2 Article

Grain boundary and size effect on the dielectric, infrared and Raman response of SrTiO3 nanograin ceramics

期刊

FERROELECTRICS
卷 363, 期 -, 页码 227-244

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/00150190802026648

关键词

strontium titanate nanoceramics; core-shell composite; dead layer; effective dielectric and infrared response; Raman response

向作者/读者索取更多资源

The recently revealed giant grain size effect on dielectric properties in undoped SrTiO3 ceramics (J. Petzelt et al., J. Phys.: Con dens. Matter 19, 196222 (2007) and references therein), was extended to smaller grains of 80 nm mean grain size. Like for previously studied ceramics with larger grain size, in addition to dielectric permittivity also the infrared and Raman responses were studied and discussed. It was shown that the reduced effective permittivity is fully accounted for by the infrared soft mode behaviour and, similar to single crystals and other ceramics studied, no dielectric dispersion appears below the THz frequency range. The rather universal (independent of the grain size and sintering process) double dead layer structure was proposed to be responsible for the observed changes in the infrared and Raman spectra, allowing the grain core to keep the single crystal dielectric function. The outer dead layer shell (obviously charged due to an oxygen deficit) is very thin (similar to 1 nm) having frequency and temperature independent low permittivity (similar to 10) and is responsible for the static permittivity suppression. The inner layer of only slightly distorted perovskite structure is polar with local polarization normal to grain boundaries gradually decreasing towards the grain centre. This polarization and/or the thickness of the polar layers, which compensate the charged grain boundaries, appear to increase on decreasing temperature, particularly below the structural phase transition. Its nature is still not fully understood. In agreement with our previous suggestions, from the Raman data it con be also concluded that in the low-temperature tetragonal phase of all SrTiO3 ceramics, the local tetragonal axes tend perpendicular to the grain boundaries and the tetragonality is strongly reduced compared to single crystals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据