4.3 Article

Glucose utilization of strains lacking PGI1 and expressing a transhydrogenase suggests differences in the pentose phosphate capacity among Saccharomyces cerevisiae strains

期刊

FEMS YEAST RESEARCH
卷 8, 期 2, 页码 217-224

出版社

BLACKWELL PUBLISHING
DOI: 10.1111/j.1567-1364.2007.00330.x

关键词

yeast; diversity; pentose phosphate pathway; pgi1 mutants

向作者/读者索取更多资源

Saccharomyces cerevisiae strains lacking phosphoglucose isomerase (pgi1) cannot use the pentose phosphate (PP) pathway to oxidize glucose, which has been explained by the lack of mechanism for reoxidation of the NADPH surplus. Consistent with this, the defective growth on glucose of a ENYpgi1 strain can be partially restored by expressing the Escherichia coli transhydrogenase udhA. In this work it was found that growth of V5 (wine yeast-derived) and FY1679 (isogenic to S288C) pgi1 mutants is not rescued by expression of udhA. Moreover, the flux through the PP pathway of 11 S. cerevisiae strains from various origins was estimated, by calculating the ratio between the enzymatic activity of the G6PDH and HXK, placed at the glycolysis-PP pathway branch point. The results show that ENY.WA-1A exhibited the highest ratio (1.5-3-fold) and the highest G6PDH activity. Overexpression of ZWF1 encoding the G6PDH in V5pgi1udhA did not rescue growth on glucose, suggesting that steps downstream the G6PDH might limit the PP pathway in this strain. As a whole, these data highlight a great intraspecies diversity in the PP pathway capacity among S. cerevisiae strains and suggest that a low capacity may be the prime limiting factor in glucose oxidation through this pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据