4.3 Article

Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria

期刊

FEMS MICROBIOLOGY LETTERS
卷 297, 期 1, 页码 131-136

出版社

OXFORD UNIV PRESS
DOI: 10.1111/j.1574-6968.2009.01674.x

关键词

methanotroph; ammonia oxidation; ammonia inhibition; nitrite toxicity

资金

  1. Kearney Foundation of Soil Science Grant [2005.202]

向作者/读者索取更多资源

Ecological studies have indicated that relative abundances of Gammaproteobacteria methanotrophs (Gamma-MOB) vs. Alphaproteobacteria methanotrophs (Alpha-MOB) in nitrogen (N) impacted soils are dictated in part by their abilities to tolerate inhibitory effects of ammonium and nitrite. In particular, ammonia is a cometabolic substrate and competitive inhibitor of methane monooxygenase. The rates of ammonia and hydroxylamine oxidation and inhibition of methane-oxidizing activity by ammonium and nitrite were compared among two Gamma-MOB and two Alpha-MOB to determine whether methanotrophs of the same class shared similar physiological profiles. Each isolate exhibited unique K-m(app) for ammonia and V-max for nitrite production with or without reductant (methane or sodium formate). The rates of nitrite production from hydroxylamine followed similar trends to rates of ammonia oxidation, indicating that hydroxylamine-oxidizing enzymes were central participants in the ammonia-oxidizing pathway. Methylomonas methanica was incapable of either ammonia or hydroxylamine oxidation. A broad range of sensitivities to ammonium and nitrite inhibition were measured with little consistency between isolates of the same class. The results indicate that physiological responses, and perhaps environmental adaptations, to N compounds are organism specific for methanotrophs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据