4.5 Article

Sulfate reduction and sulfide oxidation in extremely steep salinity gradients formed by freshwater springs emerging into the Dead Sea

期刊

FEMS MICROBIOLOGY ECOLOGY
卷 90, 期 3, 页码 956-969

出版社

OXFORD UNIV PRESS
DOI: 10.1111/1574-6941.12449

关键词

salinity fluctuation; halophilic sulfate reducers; isotopic fractionation; Epsilonproteobacteria

资金

  1. Max-Planck-Society
  2. SUMAR project (BMBF) [02WM0848]

向作者/读者索取更多资源

Abundant microbial mats, recently discovered in underwater freshwater springs in the hypersaline Dead Sea, are mostly dominated by sulfur-oxidizing bacteria. We investigated the source of sulfide and the activity of these communities. Isotopic analysis of sulfide and sulfate in the spring water showed a fractionation of 39-50 parts per thousand indicative of active sulfate reduction. Sulfate reduction rates (SRR) in the spring sediment (< 2.8 nmol cm(-3) day(-1)) are too low to account for the measured sulfide flux. Thus, sulfide from the springs, locally reduced salinity and O-2 from the Dead Sea water are responsible for the abundant microbial biomass around the springs. The springs flow is highly variable and accordingly the local salinities. We speculate that the development of microbial mats dominated by either Sulfurimonas/Sulfurovum-like or Thiobacillus/Acidithiobacillus-like sulfide-oxidizing bacteria, results from different mean salinities in the microenvironment of the mats. SRR of up to 10 nmol cm(-3) day(-1) detected in the Dead Sea sediment are surprisingly higher than in the less saline springs. While this shows the presence of an extremely halophilic sulfate-reducing bacteria community in the Dead Sea sediments, it also suggests that extensive salinity fluctuations limit these communities in the springs due to increased energetic demands for osmoregulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据