4.5 Article

Ecophysiology and the energetic benefit of mixotrophicFe(II) oxidation by various strains of nitrate-reducing bacteria

期刊

FEMS MICROBIOLOGY ECOLOGY
卷 70, 期 3, 页码 335-343

出版社

OXFORD UNIV PRESS
DOI: 10.1111/j.1574-6941.2009.00755.x

关键词

Fe oxidation; nitrate reduction; mixotrophy; lithotrophy; anaerobic iron oxidation

资金

  1. ErnmyNoether fellowship
  2. German Research Foundation (Deutsche Forschungsgerneinschaft, DFG)

向作者/读者索取更多资源

In order to assess the importance of nitrate-dependent Fe(II) oxidation and its impact on the growth physiology of dominant Fe oxidizers, we counted these bacteria in freshwater lake sediments and studied their growth physiology. Most probable number counts of nitrate-reducing Fe(II)-oxidizing bacteria in the sediment of Lake Constance, a freshwater lake in Southern Germany, yielded about 105 cells mL(-1) of the total heterotrophic nitrate-reducing bacteria, with about 1% (103 cells mL(-1)) of nitrate-reducing Fe(II) oxidizers. We investigated the growth physiology of Acidovorax sp. strain BoFeN1, a dominant nitrate-reducing mixotrophic Fe(II) oxidizer isolated from this sediment. Strain BoFeN1 uses several organic compounds (but no sugars) as substrates for nitrate reduction. It also reduces nitrite, dinitrogen monoxide, and 02, but cannot reduce Fe(III). Growth experiments with cultures amended either with acetate plus Fe(II) or with acetate alone demonstrated that the simultaneous oxidation of Fe(II) and acetate enhanced growth yields with acetate alone (12.5 g dry mass mol(-1) acetate) by about 1.4 g dry mass mol(-1) Fe(II). Also, pure cultures of Pseudomonas stutzeri and Paracoccus denitrificans strains can oxidize Fe(II) with nitrate, whereas Pseudomonas fluorescens and Thiobacillus denitrificans strains did not. Our study demonstrates that nitrate-dependent Fe(II) oxidation contributes to the energy metabolism of these bacteria, and that nitrate-dependent Fe(II) oxidation can essentially contribute to anaerobic iron cycling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据