3.9 Article

The human macrophage sodium channel NaV1.5 regulates mycobacteria processing through organelle polarization and localized calcium oscillations

期刊

FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY
卷 63, 期 3, 页码 319-327

出版社

WILEY
DOI: 10.1111/j.1574-695X.2011.00853.x

关键词

macrophage; phagocytosis; voltage-gated sodium channel; calcium signaling

资金

  1. University of Wisconsin
  2. VA Merit Award (BLRD)

向作者/读者索取更多资源

Phagocytosis and intracellular processing of mycobacteria by macrophages are complex cellular processes that require spatial and temporal coordination of particle uptake, organelle movement, activation of signaling pathways, and channel-mediated ionic flux. Recent work demonstrated that human macrophage NaV1.5, an intracellular voltage-gated sodium channel expressed on late endosomes, enhances endosomal acidification and phagocytosis. Here, using bacillus Camille-Guerin (BCG) as a model of mycobacterial infection, we examined how this channel regulates phagocytosis and phagosome maturation in human macrophages. Knockdown of NaV1.5 reduced high capacity uptake of labeled BCG. BCG-containing, NaV1.5-expressing cells demonstrated localization of NaV1.5 and Rab-7 positive endosomes and mitochondria to periphagosome regions that was not observed in NaV1.5-deficient cells. Knockdown of the channel reduced the initial calcium response following bacterial challenge and prevented the generation of prolonged and localized calcium oscillations during phagosome maturation. Inhibition of the mitochondrial Na+/Ca2+ exchanger also prevented prolonged calcium oscillations during phagosome maturation. These results suggest that NaV1.5 and mitochondrial-dependent calcium signaling regulate mycobacteria phagocytosis and phagosome maturation in human macrophages through spatial-temporal coordination of calcium signaling within a unique subcellular region.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据