3.9 Article

Anthrax infection inhibits the AKT signaling involved in the E-cadherin-mediated adhesion of lung epithelial cells

期刊

FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY
卷 56, 期 2, 页码 129-142

出版社

WILEY
DOI: 10.1111/j.1574-695X.2009.00558.x

关键词

reverse-phase microarray; cell signaling; epithelial cells; AKT; cell-cell adherence

资金

  1. US Department of Defense [DAMD17-03-C-0122]
  2. Department of Energy [FC52-FC04NA25455]

向作者/读者索取更多资源

The effect of anthrax infection on phosphoprotein signaling was studied in human small airway lung epithelial cells exposed to B. anthracis spores of the plasmidless dSterne strain in comparison with the Sterne strain containing the toxigenic plasmid (pXO1). The differential regulation of phosphorylation was found in the mitogen-activated protein kinase cascade (ERK, p38, and P90RSK), the PI3K cascade (AKT, GSK-3 alpha/beta), and downstream in the case of the proapoptotic BAD and the transcription factor STAT3. Both strains stimulate phosphorylation of CREB and inhibit phosphorylation of 4E-BP1 required for activation of cap-dependent translation. Downregulation of the survival AKT phosphorylation by the Sterne strain inhibits the process of Ca2+-dependent homophilic interaction of E-cadherin (EC) upon formation or repair of cell-cell contacts. Both lethal and edema toxins produced by the Sterne strain inhibit the AKT phosphorylation induced during the EC-mediated signaling. Activity of ERK1/2 and p38 inhibitors indicates that inhibition of AKT phosphorylation takes place through the ERK1/2-PI3K crosstalk. In Sterne spore-challenged mice, a specific inhibitor of PI3K/AKT, wortmannin, accelerates the lethal outcome, and reduction of AKT phosphorylation in the circulating blood cells coincides with the death of animals. We conclude that the PI3K/AKT pathway controlling the integrity of epithelium plays an important survival role in anthrax infection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据