4.5 Review

Can polymeric vesicles that confine enzymatic reactions act as simplified organelles?

期刊

FEBS LETTERS
卷 585, 期 11, 页码 1699-1706

出版社

WILEY
DOI: 10.1016/j.febslet.2011.05.003

关键词

Artificial organelle; Nanoreactor; Self-assembly; Cell-uptake; Enzyme activity; Requirement

资金

  1. Swiss National Science Foundation
  2. NCCR Nanoscale Science

向作者/读者索取更多资源

In various pathological conditions an advantage may be gained by reinforcing an intrinsic organismal response. This can be achieved, for example, by enzyme replacement therapy, which can amplify specific, intrinsic activities of the organelles. In this respect, polymeric nanoreactors composed of vesicles that encapsulate an enzyme or a combination of enzymes in their cavities represent a novel approach in therapeutic applications because they behave like simplified organelles. As compartments, polymeric vesicles possess a membrane that is more stable than the corresponding lipid membrane of liposomes, with the dual role of protecting enzymes and simultaneously allowing them to act in situ. A complex scenario of requirements must be fulfilled by enzyme-containing polymeric nanoreactors if they are to function under biological conditions and serve to model organelles. Nanoreactors are described here in terms of the existing models and the challenges faced in developing artificial organelles for therapeutic applications. We will focus on describing how polymeric vesicles can be used to provide a protected compartment for enzymatic reactions, and serve as simplified organelles inside cells. (C) 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据