4.6 Review

Adenosine-5-phosphosulfate - a multifaceted modulator of bifunctional 3-phospho-adenosine-5-phosphosulfate synthases and related enzymes

期刊

FEBS JOURNAL
卷 280, 期 13, 页码 3050-3057

出版社

WILEY
DOI: 10.1111/febs.12252

关键词

3-phospho-adenosine-5-phosphosulfate (PAPS) synthase; adenosine-5-phosphosulfate (APS); enzyme inhibitor; protein stability; sulfation; sulfonation; sulfurylation

资金

  1. Wellcome Trust [092283]
  2. EMBO [ASTF 151/2011]
  3. Wellcome Trust Institutional Strategic Support Fund

向作者/读者索取更多资源

All sulfation reactions rely on active sulfate in the form of 3-phospho-adenosine-5-phosphosulfate (PAPS). In fungi, bacteria, and plants, the enzymes responsible for PAPS synthesis, ATP sulfurylase and adenosine-5-phosphosulfate (APS) kinase, reside on separate polypeptide chains. In metazoans, however, bifunctional PAPS synthases catalyze the consecutive steps of sulfate activation by converting sulfate to PAPS via the intermediate APS. This intricate molecule and the related nucleotides PAPS and 3-phospho-adenosine-5-phosphate modulate the function of various enzymes from sulfation pathways, and these effects are summarized in this review. On the ATP sulfurylase domain that initially produces APS from sulfate and ATP, APS acts as a potent product inhibitor, being competitive with both ATP and sulfate. For the APS kinase domain that phosphorylates APS to PAPS, APS is an uncompetitive substrate inhibitor that can bind both at the ATP/ADP-binding site and the PAPS/APS-binding site. For human PAPS synthase1, the steady-state concentration of APS has been modelled to be 1.6m, but this may increase up to 60m under conditions of sulfate excess. It is noteworthy that the APS concentration for maximal APS kinase activity is 15m. Finally, we recognized APS as a highly specific stabilizer of bifunctional PAPS synthases. APS most likely stabilizes the APS kinase part of these proteins by forming a dead-end enzyme-ADP-APS complex at APS concentrations between 0.5 and 5m; at higher concentrations, APS may bind to the catalytic centers of ATP sulfurylase. Based on the assumption that cellular concentrations of APS fluctuate within this range, APS can therefore be regarded as a key modulator of PAPS synthase functions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据