4.6 Article

The degradation (by distinct pathways) of human D-amino acid oxidase and its interacting partner pLG72-two key proteins in D-serine catabolism in the brain

期刊

FEBS JOURNAL
卷 281, 期 3, 页码 708-723

出版社

WILEY-BLACKWELL
DOI: 10.1111/febs.12616

关键词

degradation pathway; D-serine; neuromodulator; regulation; schizophrenia

资金

  1. MIUR [2008N2FM4A001]
  2. Fondo di Ateneo per la Ricerca
  3. Consorzio Interuniversitario per le Biotecnologie (CIB)
  4. Centro Grandi Attrezzature dell'Universita degli Studi dell'Insubria

向作者/读者索取更多资源

Human D-amino acid oxidase (EC 1.4.3.3; hDAAO) is a peroxisomal flavoenzyme significantly enriched in the mammalian brain. hDAAO has been proposed to play (with serine racemase; EC 5.1.1.18) an essential role in the catabolism of D-serine, an 'atypical' key signalling molecule that acts as allosteric activator of the N-methyl-D-aspartate-type glutamate receptor (NMDAr). hDAAO and its interacting partner pLG72 have been related to schizophrenia, a highly disabling psychiatric disorder in which a dysfunction of NMDA-mediated neurotransmission is widely assumed to occur. We previously demonstrated that the D-serine cellular concentration depends on hDAAO and pLG72 expression levels and that newly-synthesized hDAAO interacts with its modulator in the cytosol, being progressively destabilized and inactivated. To obtain insight into the mechanisms regulating cellular D-serine levels, we investigated the degradation pathways of hDAAO and pLG72 in U87 glioblastoma cells stably expressing enhanced yellow fluorescent protein-hDAAO (peroxisomal), hDAAO-enhanced yellow fluorescent protein (cytosolic) or pLG72-enhanced cyan fluorescent protein (mitochondrial) proteins. hDAAO is a long-lived protein: the peroxisomal fraction of this flavoprotein is degraded via the lysosomal/endosomal pathway (and blocking this pathway increases the cellular hDAAO activity and decreases D-serine levels), whereas the cytosolic portion is ubiquitinated and targeted to the proteasome. By contrast, pLG72 shows a rapid turnover (t(1/2) approximate to 25-40 min) and is degraded via the proteasome system, albeit not ubiquitinated. Overexpression of pLG72 increases the turnover of hDAAO, in turn playing a protective role against excessive D-serine depletion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据