4.6 Article

A novel prokaryotic L-arginine:glycine amidinotransferase is involved in cylindrospermopsin biosynthesis

期刊

FEBS JOURNAL
卷 277, 期 18, 页码 3844-3860

出版社

WILEY
DOI: 10.1111/j.1742-4658.2010.07788.x

关键词

amidinotransferase; cyanobacterial toxin; enzyme kinetics; protein stability; toxin biosynthesis

资金

  1. Australian Research Council

向作者/读者索取更多资源

We report the first characterization of an l-arginine:glycine amidinotransferase from a prokaryote. The enzyme, CyrA, is involved in the pathway for biosynthesis of the polyketide-derived hepatotoxin cylindrospermopsin from Cylindrospermopsis raciborskii AWT205. CyrA is phylogenetically distinct from other amidinotransferases, and structural alignment shows differences between the active site residues of CyrA and the well-characterized human l-arginine:glycine amidinotransferase (AGAT). Overexpression of recombinant CyrA in Escherichia coli enabled biochemical characterization of the enzyme, and we confirmed the predicted function of CyrA as an l-arginine:glycine amidinotransferase by 1H NMR. As compared with AGAT, CyrA showed narrow substrate specificity when presented with substrate analogs, and deviated from regular Michaelis-Menten kinetics in the presence of the non-natural substrate hydroxylamine. Studies of initial reaction velocities and product inhibition, and identification of intermediate reaction products, were used to probe the kinetic mechanism of CyrA, which is best described as a hybrid of ping-pong and sequential mechanisms. Differences in the active site residues of CyrA and AGAT are discussed in relation to the different properties of both enzymes. The enzyme had maximum activity and maximum stability at pH 8.5 and 6.5, respectively, and an optimum temperature of 32 degrees C. Investigations into the stability of the enzyme revealed that an inactivated form of this enzyme retained an appreciable amount of secondary structure elements even on heating to 94 degrees C, but lost its tertiary structure at low temperature (T-max of 44.5 degrees C), resulting in a state reminiscent of a molten globule. CyrA represents a novel group of prokaryotic amidinotransferases that utilize arginine and glycine as substrates with a complex kinetic mechanism and substrate specificity that differs from that of the eukaryotic l-arginine:glycine amidinotransferases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据