4.6 Article

Involvement of Ech hydrogenase in energy conservation of Methanosarcina mazei

期刊

FEBS JOURNAL
卷 277, 期 16, 页码 3396-3403

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1742-4658.2010.07744.x

关键词

archaea; electron transport; electron transport phosphorylation; methane; methanogenesis; proton motive force; proton pump

资金

  1. Deutsche Forschungsgemeinschaft [De488/9-1]

向作者/读者索取更多资源

Methanosarcina mazei belongs to the group of aceticlastic methanogens and converts acetate into the potent greenhouse gases CO(2) and CH(4). The aceticlastic respiratory chain involved in methane formation comprises the three transmembrane proteins Ech hydrogenase, F(420) nonreducing hydrogenase and heterodisulfide reductase. It has been shown that the latter two contribute to the proton motive force. The data presented here clearly demonstrate that Ech hydrogenase is also involved in energy conservation. ATP synthesis was observed in a cytoplasm-free vesicular system of Ms. mazei that was dependent on the oxidation of reduced ferredoxin and the formation of molecular hydrogen (as catalysed by Ech hydrogenase). Such an ATP formation was not observed in a Delta ech mutant strain. The protonophore 3,5-di-tert-butyl-4-hydroxybenzylidene-malononitrile (SF6847) led to complete inhibition of ATP formation in the Ms. mazei wild-type without inhibiting hydrogen production by Ech hydrogenase, whereas the sodium ion ionophore ETH157 did not affect ATP formation in this system. Thus, we conclude that Ech hydrogenase acts as primary proton pump in a ferredoxin-dependent electron transport system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据