4.6 Article

Expression profile of PIN, AUX/LAX and PGP auxin transporter gene families in Sorghum bicolor under phytohormone and abiotic stress

期刊

FEBS JOURNAL
卷 277, 期 14, 页码 2954-2969

出版社

WILEY
DOI: 10.1111/j.1742-4658.2010.07706.x

关键词

abiotic stresses; AUX; LAX; PGP; PIN; Sorghum bicolor

资金

  1. National Natural Science Foundation of China [30770213, 30971743]
  2. National High Technology Research and Development Program of China (863 Program) [2007AA10Z188, 2007AA10Z191, 2008AA10Z125]
  3. Natural Science Foundation of Zhejiang province, China [Y3080111]

向作者/读者索取更多资源

Auxin is transported by the influx carriers auxin resistant 1/like aux1 (AUX/LAX), and the efflux carriers pin-formed (PIN) and P-glycoprotein (PGP), which play a major role in polar auxin transport. Several auxin transporter genes have been characterized in dicotyledonous Arabidopsis, but most are unknown in monocotyledons, especially in sorghum. Here, we analyze the chromosome distribution, gene duplication and intron/exon of SbPIN, SbLAX and SbPGP gene families, and examine their phylogenic relationships in Arabidopsis, rice and sorghum. Real-time PCR analysis demonstrated that most of these genes were differently expressed in the organs of sorghum. SbPIN3 and SbPIN9 were highly expressed in flowers, SbLAX2 and SbPGP17 were mainly expressed in stems, and SbPGP7 was strongly expressed in roots. This suggests that individual genes might participate in specific organ development. The expression profiles of these gene families were analyzed after treatment with: (a) the phytohormones indole-3-acetic acid and brassinosteroid; (b) the polar auxin transport inhibitors 1-naphthoxyacetic acids, 1-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid; and (c) abscissic acid and the abiotic stresses of high salinity and drought. Most of the auxin transporter genes were strongly induced by indole-3-acetic acid and brassinosteroid, providing new evidence for the synergism of these phytohormones. Interestingly, most genes showed similar trends in expression under polar auxin transport inhibitors and each also responded to abscissic acid, salt and drought. This study provides new insights into the auxin transporters of sorghum.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据