4.6 Review

Donor and acceptor substrate selectivity among plant glycoside hydrolase family 32 enzymes

期刊

FEBS JOURNAL
卷 276, 期 20, 页码 5788-5798

出版社

WILEY
DOI: 10.1111/j.1742-4658.2009.07316.x

关键词

fructan; fructosyl transferase; invertase; structure-function; sucrose

向作者/读者索取更多资源

Plant family 32 glycoside hydrolase enzymes include hydrolases (cell wall invertases, fructan exohydrolases, vacuolar invertases) and fructosyltransferases. These enzymes are very similar at the molecular and structural levels but are functionally different. Understanding the basis of the functional diversity in this family is a challenging task. By combining structural and site-directed mutagenesis data, Asp239 in AtcwINV1 was identified as an amino acid critical for binding and stabilizing sucrose. Plant fructan exohydrolases lack such an Asp239 equivalent. Substitution of Asp239 led to the loss of invertase activity, while its introduction in fructan exohydrolases increased invertase activity. Some fructan exohydrolases are inhibited by sucrose. The difference between the inhibitor (fructan exohydrolase) and the substrate (invertase) binding configurations of sucrose can be explained by the different orientation of Trp82. Furthermore, the evolutionary hydrolase/transferase transition could be mimicked and the difference between S-type fructosyltransferases (sucrose as donor) and F-type fructosyltransferases (fructan as donor) could be unravelled.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据