4.6 Article

Phosphorylation of hormone-sensitive lipase by protein kinase A in vitro promotes an increase in its hydrophobic surface area

期刊

FEBS JOURNAL
卷 276, 期 17, 页码 4752-4762

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1742-4658.2009.07172.x

关键词

cholesterol ester hydrolase; electron microscopy; fluorescence spectroscopy; phospholipid vesicles

资金

  1. Swedish Research Council [11284]
  2. Swedish Diabetes Association, Faculty of Medicine at Lund University [7480]
  3. Research School in Pharmaceutical Sciences (FLAK)

向作者/读者索取更多资源

Hormone-sensitive lipase (EC 3.1.1.79; HSL) is a key enzyme in the mobilization of fatty acids from stored triacylglycerols. HSL activity is controlled by phosphorylation of at least four serines. In rat HSL, Ser563, Ser659 and Ser660 are phosphorylated by protein kinase A (PKA) in vitro as well as in vivo, and Ser660 and Ser659 have been shown to be the activity-controlling sites in vitro. The exact molecular events of PKA-mediated activation of HSL in vitro are yet to be determined, but increases in both V-max and S-0.5 seem to be involved, as recently shown for human HSL. In this study, the hydrophobic fluorescent probe 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) was found to inhibit the hydrolysis of triolein by purified recombinant rat adipocyte HSL, with a decrease in the effect of bis-ANS upon PKA phosphorylation of HSL. The interaction of HSL with bis-ANS was found to have a K-d of 1 mu m in binding assays. Upon PKA phosphorylation, the interactions of HSL with both bis-ANS and the alternative probe SYPRO Orange were increased. By negative stain transmission electron microscopy, phosphorylated HSL was found to have a closer interaction with phospholipid vesicles than unphosphorylated HSL. Taken together, our results show that HSL increases its hydrophobic nature upon phosphorylation by PKA. This suggests that PKA phosphorylation induces a conformational change that increases the exposed hydrophobic surface and thereby facilitates binding of HSL to the lipid substrate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据