4.6 Article

The endogenous retinoid metabolite S-4-oxo-9-cis-13,14-dihydro-retinoic acid activates retinoic acid receptor signalling both in vitro and in vivo

期刊

FEBS JOURNAL
卷 276, 期 11, 页码 3043-3059

出版社

WILEY
DOI: 10.1111/j.1742-4658.2009.07023.x

关键词

dihydro-retinoic acid metabolite; gene expression; novel retinoid metabolites; RAR; vitamin A metabolism

资金

  1. European Union programmes BONETOX
  2. NUTRICEPTORS
  3. CASCADE

向作者/读者索取更多资源

Retinoic acid receptor (RAR) and retinoid X receptor are ligand-induced transcription factors that belong to the nuclear receptor family. The receptors are activated by small hydrophobic compounds, such as all-trans-retinoic acid and 9-cis-retinoic acid, respectively. Interestingly, these receptors are also targets for a number of exogenous compounds. In this study, we characterized the biological activity of the 9-cis-substituted retinoic acid metabolite, S-4-oxo-9-cis-13,14-dihydro-retinoic acid (S-4o9cDH-RA). The endogenous levels of this metabolite in wild-type mice and rats were found to be higher than those of all-trans-retinoic acid, especially in the liver. Using cell-based luciferase reporter systems, we showed that S-4o9cDH-RA activates the transcription of retinoic acid response element-containing genes in several cell types, both from a simple 2xDR5 element and from the promoter of the natural retinoid target gene RAR beta 2. In addition, quantitative RT-PCR analysis demonstrated that S-4o9cDH-RA treatment significantly increases the endogenous mRNA levels of the RAR target gene RAR beta 2. Utilizing a limited proteolytic digestion assay, we showed that S-4o9cDH-RA induces conformational changes to both RAR alpha and RAR beta in the same manner as does all-trans-retinoic acid, suggesting that S-4o9cDH-RA is indeed an endogenous ligand for these receptors. These in vitro results were corroborated in an in vivo system, where S-4o9cDH-RA induced morphological changes similar to those of all-trans-retinoic acid in the developing chicken wing bud. When locally applied to the wing bud, S-4o9cDH-RA induced digit pattern duplications in a dose-dependent fashion. The results illustrate that S-4o9cDH-RA closely mimics all-trans-retinoic acid with regard to pattern respecification. Finally, using quantitative RT-PCR analysis, we showed that S-4o9cDH-RA induces the transcription of several retinoic acid-regulated genes in chick wing buds, including Hoxb8, RAR beta 2, shh, Cyp26 and bmp2. Although S-4o9cDH-RA was less potent when compared with all-trans-retinoic acid, the findings clearly demonstrate that S-4o9cDH-RA has the capacity to bind and activate nuclear retinoid receptors and regulate gene transcription both in vitro and in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据