4.6 Article

Kinetic and mechanistic characterization of Mycobacterium tuberculosis glutamyl-tRNA synthetase and determination of its oligomeric structure in solution

期刊

FEBS JOURNAL
卷 276, 期 5, 页码 1398-1417

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1742-4658.2009.06880.x

关键词

glutamyl-tRNA reductase; glutamyl-tRNA synthetase; Mycobacterium tuberculosis; protein synthesis; tetrapyrrole synthesis

资金

  1. Ministero dell'Istruzione, Universita' e Ricerca MIUR-PRIN2003 (Rome, Italy)
  2. European Union [QLK2-CT-2000-01761]
  3. BC and Fondazione Cariplo (Milano, Italy) [2004-1580]
  4. EU design study SAXIER [011934]

向作者/读者索取更多资源

Mycobacterium tuberculosis glutamyl-tRNA synthetase (Mt-GluRS), encoded by Rv2992c, was overproduced in Escherichia coli cells, and purified to homogeneity. It was found to be similar to the other well-characterized GluRS, especially the E. coli enzyme, with respect to the requirement for bound tRNA(Glu) to produce the glutamyl-AMP intermediate, and the steady-state kinetic parameters k(cat) (130 min(-1)) and K-M for tRNA (0.7 mu m) and ATP (78 mu m), but to differ by a one order of magnitude higher K-M value for l-Glu (2.7 mm). At variance with the E. coli enzyme, among the several compounds tested as inhibitors, only pyrophosphate and the glutamyl-AMP analog glutamol-AMP were effective, with K-i values in the mu m range. The observed inhibition patterns are consistent with a random binding of ATP and l-Glu to the enzyme-tRNA complex. Mt-GluRS, which is predicted by genome analysis to be of the non-discriminating type, was not toxic when overproduced in E. coli cells indicating that it does not catalyse the mischarging of E. coli tRNA(Gln) with l-Glu and that GluRS/tRNA(Gln) recognition is species specific. Mt-GluRS was significantly more sensitive than the E. coli form to tryptic and chymotryptic limited proteolysis. For both enzymes chymotrypsin-sensitive sites were found in the predicted tRNA stem contact domain next to the ATP binding site. Mt-GluRS, but not Ec-GluRS, was fully protected from proteolysis by ATP and glutamol-AMP. Small-angle X-ray scattering showed that, at variance with the E. coli enzyme that is strictly monomeric, the Mt-GluRS monomer is present in solution in equilibrium with the homodimer. The monomer prevails at low protein concentrations and is stabilized by ATP but not by glutamol-AMP. Inspection of small-angle X-ray scattering-based models of Mt-GluRS reveals that both the monomer and the dimer are catalytically active. By using affinity chromatography and His(6)-tagged forms of either GluRS or glutamyl-tRNA reductase as the bait it was shown that the M. tuberculosis proteins can form a complex, which may control the flux of Glu-tRNA(Glu) toward protein or tetrapyrrole biosynthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据