4.7 Article

Physical confinement alters tumor cell adhesion and migration phenotypes

期刊

FASEB JOURNAL
卷 26, 期 10, 页码 4045-4056

出版社

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.12-211441

关键词

mesenchymal; microtubules; actin; cytoskeleton

资金

  1. U.S. National Cancer Institute [T32-CA130840, U54-CA143868, RO1-CA101135]
  2. Kleberg Foundation

向作者/读者索取更多资源

Cell migration on planar surfaces is driven by cycles of actin protrusion, integrin-mediated adhesion, and myosin-mediated contraction; however, this mechanism may not accurately describe movement in 3-dimensional (3D) space. By subjecting cells to restrictive 3D environments, we demonstrate that physical confinement constitutes a biophysical stimulus that alters cell morphology and suppresses mesenchymal motility in human breast carcinoma (MDA-MB-231). Dorsoventral polarity, stress fibers, and focal adhesions are markedly attenuated by confinement. Inhibitors of myosin, Rho/ROCK, or beta 1-integrins do not impair migration through 3-mu m-wide channels (confinement), even though these treatments repress motility in 50-mu m-wide channels (unconfined migration) by >= 50%. Strikingly, confined migration persists even when F-actin is disrupted, but depends largely on microtubule (MT) dynamics. Interfering with MT polymerization/depolymerization causes confined cells to undergo frequent directional changes, thereby reducing the average net displacement by >= 80% relative to vehicle controls. Live-cell EB1-GFP imaging reveals that confinement redirects MT polymerization toward the leading edge, where MTs continuously impact during advancement of the cell front. These results demonstrate that physical confinement can induce cytoskeletal alterations that reduce the dependence of migrating cells on adhesion-contraction force coupling. This mechanism may explain why integrins can exhibit reduced or altered function during migration in 3D environments.-Balzer, E. M., Tong, Z., Paul, C. D., Hung, W.-C., Stroka, K. M., Boggs, A. E., Martin, S. S., Konstantopoulos, K. Physical confinement alters tumor cell adhesion and migration phenotypes. FASEB J. 26, 4045-4056 (2012). www.fasebj.org

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据