4.7 Article

Gene targeting by the vitamin D response element binding protein reveals a role for vitamin D in osteoblast mTOR signaling

期刊

FASEB JOURNAL
卷 25, 期 3, 页码 937-947

出版社

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.10-172577

关键词

resistance; bone; vitamin D receptor

资金

  1. U.S. National Institutes of Health [2R01AR037399-21]
  2. German National Genome Research Network [01GS0850]

向作者/读者索取更多资源

Transcriptional regulation by hormonal 1,25-dihydroxyvitamin D-3 [1,25(OH)(2)D-3] involves occupancy of vitamin D response elements (VDREs) by the VDRE binding protein (VDRE-BP) or 1,25(OH)(2)D-3-bound vitamin D receptor (VDR). This relationship is disrupted by elevated VDRE-BP, causing a form of hereditary vitamin D-resistant rickets (HVDRR). DNA array analysis showed that of 114 genes regulated by 1,25(OH)(2)D-3 in control cells, almost all (113) were rendered insensitive to the hormone in VDRE-BP-overexpressing HVDRR cells. Among these was the gene for DNA-damage-inducible transcript 4 (DDIT4), an inhibitor of mammalian target of rapamycin (mTOR) signaling. Chromatin immunoprecipitation PCR using 1,25(OH)(2)D-3-treated osteoblasts confirmed that VDR and VDRE-BP compete for binding to the DDIT4 gene promoter. Expression of DDIT4 mRNA in these cells was induced (1.6-6 fold) by 1,25(OH)(2)D-3 (10-100 nM), and Western blot and flow cytometry analysis showed that this response involved suppression of phosphorylated S6K1(T389) (a downstream target of mTOR) similar to rapamycin treatment. siRNA knockdown of DDIT4 completely abrogated antiproliferative responses to 1,25(OH) 2D3, whereas overexpression of VDRE-BP exerted a dominant-negative effect on transcription of 1,25(OH)(2)D-3-target genes. DDIT4, an inhibitor of mTOR signaling, is a direct target for 1,25(OH)(2)D-3 and VDRE-BP, and functions to suppress cell proliferation in response to vitamin D.-Lisse, T. S., Liu, T., Irmler, M., Beckers, J., Chen, H., Adams, J. S., Hewison, M. Gene targeting by the vitamin D response element binding protein reveals a role for vitamin D in osteoblast mTOR signaling. FASEB J. 25, 937-947 (2011). www.fasebj.org

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据