4.7 Article

Gene delivery to mitotic and postmitotic photoreceptors via compacted DNA nanoparticles results in improved phenotype in a mouse model of retinitis pigmentosa

期刊

FASEB JOURNAL
卷 24, 期 4, 页码 1178-1191

出版社

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.09-139147

关键词

gene replacement therapy; retinal degeneration slow protein; mouse opsin promoter

资金

  1. National Institutes of Health [EY-010609, EY-018656, EY-007361]
  2. Foundation Fighting Blindness, Baltimore
  3. Oklahoma Center for the Advancement of Science and Technology (OCAST), Oklahoma City, OK, USA

向作者/读者索取更多资源

The purpose of the present study was to test the therapeutic efficiency and safety of compacted-DNA nanoparticle-mediated gene delivery into the sub-retinal space of a juvenile mouse model of retinitis pigmentosa. Nanoparticles containing the mouse opsin promoter and wild-type mouse Rds gene were injected subretinally into mice carrying a haploinsufficiency mutation in the retinal degeneration slow (rds(+/-)) gene at postnatal day (P) 5 and 22. Control mice were either injected with saline, injected with uncompacted naked plasmid DNA carrying the Rds gene, or remained untreated. Rds mRNA levels peaked at postinjection day 2 to 7 (PI-2 to PI-7) for P5 injections, stabilized at levels 2-fold higher than in uninjected controls for both P5 and P22 injections, and remained elevated at the latest time point examined (PI-120). Rod function (measured by electroretinography) showed modest but statistically significant improvement compared with controls after both P5 and P22 injections. Cone function in nanoparticle-injected eyes reached wild-type levels for both ages of injections, indicating full prevention of cone degeneration. Ultrastructural examination at PI-120 revealed significant improvement in outer segment structures in P5 nanoparticle-injected eyes, while P22 injection had a modest structural improvement. There was no evidence of macrophage activation or induction of IL-6 or TNF-alpha mRNA in P5 or P22 nanoparticle-dosed eyes at either PI-2 or PI-30. Thus, compacted-DNA nanoparticles can efficiently and safely drive gene expression in both mitotic and postmitotic photoreceptors and retard degeneration in this model. These findings, using a clinically relevant treatment paradigm, illustrate the potential for application of nanoparticle-based gene replacement therapy for treatment of human retinal degenerations.-Cai, X., Conley, S. M., Nash, Z., Fliesler, S. J., Cooper, M. J., Naash, M. I. Gene delivery to mitotic and postmitotic photoreceptors via compacted DNA nanoparticles results in improved phenotype in a mouse model of retinitis pigmentosa. FASEB J. 24, 1178-1191 (2010). www.fasebj.org

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据