4.7 Article

Platelet microparticles: a new player in malaria parasite cytoadherence to human brain endothelium

期刊

FASEB JOURNAL
卷 23, 期 10, 页码 3449-3458

出版社

WILEY
DOI: 10.1096/fj.09-135822

关键词

vesiculation; internalization; antigen transfer; microvessels; pathogenesis; neuroinflammation

资金

  1. National Health and Medical Research Council of Australia [464893]
  2. Australian Research Council [DP0774425]
  3. European Union-Health and Medical Research Council of Australia [512101]
  4. Rebecca Cooper Foundation
  5. University of Sydney
  6. Australian Research Council [DP0774425] Funding Source: Australian Research Council

向作者/读者索取更多资源

Cerebral malaria ( CM) is characterized by accumulation of circulating cells within brain microvessels, among which platelets play an important role. In vitro, platelets modulate the cytoadherence of Plasmodium falciparum-parasitized red blood cells (PRBCs) to brain endothelial cells. Here we show for the first time that platelet microparticles (PMPs) are able to bind to PRBCs, thereby transferring platelet antigens to the PRBC surface. This binding is largely specific to PRBCs, because PMPs show little adherence to normal red blood cells. PMP adherence is also dependent on the P. falciparum erythrocyte membrane protein 1 variant expressed by PRBCs. PMP binding to PRBCs decreases after neutralization of PRBC surface proteins by trypsin or after treatment of PMPs with a mAb to platelet-endothelial cell adhesion molecule-1 (CD31) and glycoprotein IV (CD36). Furthermore, PMP uptake is a dynamic process that can be achieved by human brain endothelial cells (HBECs), inducing changes in the endothelial phenotype. Lastly, PMPs dramatically increase PRBC cytoadherence to HBECs. In conclusion, our study identifies several mechanisms by which PMPs may participate in CM pathogenesis while interacting with both PRBCs and HBECs. PMPs thereby provide a novel target for antagonizing interactions between vascular cells that promote microvascular sludging and blood brain barrier alteration during CM.-Faille, D., Combes, V., Mitchell, A. J., Fontaine, A., Juhan-Vague, I., Alessi, M.-C., Chimini, G., Fusa, T., Grau, G. E. Platelet microparticles: a new player in malaria parasite cytoadherence to human brain endothelium. FASEB J. 23, 3449-3458 ( 2009). www.fasebj.org

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据