4.7 Article

Crosstalk between AHR and Wnt signaling through R-Spondin1 impairs tissue regeneration in zebrafish

期刊

FASEB JOURNAL
卷 22, 期 8, 页码 3087-3096

出版社

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.08-109009

关键词

TCDD; dioxin; fin; differentiation; LRP6

资金

  1. NIEHS NIH HHS [ES00210, P30 ES003850, ES03850, ES10820, R01 ES010820, P30 ES000210] Funding Source: Medline

向作者/读者索取更多资源

Exposure to dioxins, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), causes a wide array of toxicities in vertebrates, which are mostly considered to be mediated through the inappropriate activation of the aryl hydrocarbon receptor (AHR) signaling pathway. Although transcriptional regulation by AHR is widely studied, the molecular mechanisms responsible for the adverse outcomes after AHR activation are largely unknown. To identify the important downstream events of AHR activation, we employed the zebrafish caudal fin regeneration model, where AHR activation blocks the regenerative process. Comparative toxicogenomic analysis revealed that both adult and larval fins respond to TCDD during regeneration with misexpression of Wnt signaling pathway members and Wnt target genes. R-Spondin1, a novel ligand for the Wnt coreceptor, was highly induced, and we hypothesized that misexpression of R-Spondin1 is necessary for AHR activation to block regeneration. Partial antisense repression of R-Spondin1 reversed the inhibitory effect of TCDD, and tissue regeneration was restored. This finding demonstrates that inhibition of regeneration by TCDD is mediated by misinduction of R-Spondin1. Because R-Spondin1 signals through the Wnt coreceptor LRP6, we further demonstrated that the TCDD-mediated block in regeneration is also LRP6 dependent. Collectively, these results indicate that inappropriate regulation of R-Spondin/LRP6 is absolutely required for TCDD to inhibit fin regeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据