4.7 Article

SEA domain proteolysis determines the functional composition of dystroglycan

期刊

FASEB JOURNAL
卷 22, 期 2, 页码 612-621

出版社

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.07-8354com

关键词

mucin; laminin; autoproteolysis; muscular dystrophy

资金

  1. NCI NIH HHS [R01 CA109579] Funding Source: Medline

向作者/读者索取更多资源

Post-translational modifications of the extracellular matrix receptor dystroglycan (DG) determine its functional state, and defects in these modifications are linked to muscular dystrophies and cancers. A prominent feature of DG biosynthesis is a precursor cleavage that segregates the ligand-binding and transmembrane domains into the noncovalently attached alpha-and beta-subunits. We investigate here the structural determinants and functional significance of this cleavage. We show that cleavage of DG elicits a conspicuous change in its ligand-binding activity. Mutations that obstruct this cleavage result in increased capacity to bind laminin, in part, due to enhanced glycosylation of alpha-DG. Reconstitution of DG cleavage in a cell-free expression system demonstrates that cleavage takes place in the endoplasmic reticulum, providing a suitable regulatory point for later processing events. Sequence and mutational analyses reveal that the cleavage occurs within a full SEA (sea urchin, enterokinase, agrin) module with traits matching those ascribed to autoproteolysis. Thus, cleavage of DG constitutes a control point for the modulation of its ligand-binding properties, with therapeutic implications for muscular dystrophies. We provide a structural model for the cleavage domain that is validated by experimental analysis and discuss this cleavage in the context of mucin protein and SEA domain evolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据