4.2 Article

First-principles stability ranking of molecular crystal polymorphs with the DFT plus MBD approach

期刊

FARADAY DISCUSSIONS
卷 211, 期 -, 页码 253-274

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8fd00066b

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [DFG-SPP 1807]
  2. European Research Council (ERC-CoG BeStMo)

向作者/读者索取更多资源

The ability to accurately calculate the relative stabilities of numerous polymorphs of a given molecular crystal is crucial for the success of any molecular crystal structure prediction (CSP) approach. We have recently presented a hierarchical CSP procedure based on van-der-Waals-inclusive density functional theory [Hoja et al., 2018, arXiv:1803.07503], which yields excellent stability rankings for molecular crystals involving rigid molecules, salts, co-crystals, and highly polymorphic drug-like molecules. This approach includes many-body dispersion effects, exact exchange, as well as vibrational free energies. Here, we discuss in detail the impact of these effects on the obtained stability rankings. In addition, we assess the impact of the approximations used in our hierarchical procedure. We show that our procedure is generally robust to 1-2 kJ mol(-1) for the systems in the latest CSP blind test but vibrational free energies for crystals involving flexible molecules would benefit from directly including many-body dispersion interactions. In addition, we also discuss the effect of temperature on the structure of molecular crystals and a simple but effective method for estimating anharmonic effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据