4.2 Article

A periodic DFT study of the activation of O-2 by Au nanoparticles on alpha-Fe2O3

期刊

FARADAY DISCUSSIONS
卷 152, 期 -, 页码 135-151

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1fd00026h

关键词

-

资金

  1. EPSRC [EP/F067496]
  2. Office of Science and Technology through EPSRC
  3. EPSRC [EP/F067496/1] Funding Source: UKRI
  4. Engineering and Physical Sciences Research Council [EP/F067496/1] Funding Source: researchfish

向作者/读者索取更多资源

Oxidation chemistry with supported Au nanoparticles as catalysts is an area of intense research. Even so there is still much discussion as to the nature of Au species generated on the complex surfaces of these catalysts and the types of oxygen species that are present. Recent experimental work has highlighted Au bi-layers with dimensions of 0.5 nm supported on iron oxide as a very efficient catalyst system for CO oxidation. This size scale implies clusters containing only 10 Au atoms, making the simulation of the nanoparticles, oxide surface and their interface amenable to perioidic density functional theory calculations. We present simulation results which demonstrate that the dissociation of O-2 is energetically favourable at the interface between nanoparticle and oxide, with both surface Fe cations and Au atoms taking part in the adsorption site. Here the barrier to dissociation of O2 is found to be lower than the energy required for molecular desorption which is not the case for isolated Au clusters. This reaction also produces oxidised Au atoms, as confirmed by Bader charge analysis. For isolated clusters we show that such oxidised Au species give rise to empty d-band states, whereas molecular adsorption of O-2 does not.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据