4.3 Article

Facies pattern and sea-level dynamics of the early Late Cretaceous transgression: a case study from the lower Danubian Cretaceous Group (Bavaria, southern Germany)

期刊

FACIES
卷 56, 期 4, 页码 483-507

出版社

SPRINGER
DOI: 10.1007/s10347-010-0224-2

关键词

Cenomanian-Turonian; Regensburg and Eibrunn formations; Bohemian Massif; Integrated stratigraphy; Sea-level changes; Depositional environments

向作者/读者索取更多资源

The facies development and onlap pattern of the lower Danubian Cretaceous Group (Bavaria, southern Germany) have been evaluated based on detailed logging, subdivision, and correlation of four key sections using an integrated stratigraphic approach as well as litho-, bio-, and microfacies analyses. Contrary to statements in the literature, the transgressive onlap of the Regensburg Formation started in the Regensburg-Kelheim area already in the early Early Cenomanian Mantelliceras mantelli ammonite Zone and not in the Late Cenomanian. In the Early Cenomanian, nearshore glauconitic-bioclastic sandstones prevailed (Saal Member), followed by Middle to lower Upper Cenomanian mid-shelf siliceous carbonates intercalated with fine-sandy to silty marls (Bad Abbach Member). Starting in the mid-Late Cenomanian (Metoicoceras geslinianum ammonite Zone), a considerable deepening pulse during the Cenomanian-Turonian Boundary Event (CTBE) initiated the deposition of the deeper shelf silty marls of the Eibrunn Formation, which range into the early Early Turonian. During the CTBE transgression, also the proximal Bodenwohrer Senke (ca. 40 km NE of Regensburg) was flooded, indicated by the onlap of the Regensburg Formation onto Variscan granites of the Bohemian Massif, overlain by a thin tongue of lowermost Turonian Eibrunn Formation. A detailed record of the positive delta C-13 excursion of the global Oceanic Anoxic Event (OAE) 2 has been retrieved from this shallow-water setting. An integrated approach of bio-, event-, carbon stable isotope and sequence stratigraphy was applied to correlate the sections and to decipher the dynamics of this overall transgressive depositional system. The Cenomanian successions show five prominent unconformities, which correlate with those being known from basins in Europe and elsewhere, indicating their eustatic origin. The rate of sea-level rise during the CTBE suggests glacio-eustasy as a driving mechanism for Late Cenomanian sea-level changes. The Regensburg and Eibrunn formations of the lower Danubian Cretaceous Group are highly diachronous lithostratigraphic units. Their regional distribution and northeast-directed onlap pattern onto the southwestern margin of the Bohemian Massif can readily be explained by the lateral movements of roughly coast-parallel (i.e., NW/SE-trending) facies belts of a graded shelf system transgressing on a northeastward-rising substrate. It took the Cenomanian coastline ca. 6 Ma to transgress from southwest of Regensburg to the topographically elevated granite cliffs southeast of Roding in the Bodenwohrer Senke (=60 km distance).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据