4.2 Article

Unraveling the function of paralogs of the aldehyde dehydrogenase super family from Sulfolobus solfataricus

期刊

EXTREMOPHILES
卷 17, 期 2, 页码 205-216

出版社

SPRINGER JAPAN KK
DOI: 10.1007/s00792-012-0507-3

关键词

Archaea; Aldehyde dehydrogenase superfamily; Methylmalonate semialdehyde dehydrogenase; Succinic semialdehyde dehydrogenase; Central carbohydrate metabolism; Isoenzymes

资金

  1. BMBF [0315004A]
  2. DFG [SI 642/10-1]

向作者/读者索取更多资源

Aldehyde dehydrogenases (ALDHs) have been well established in all three domains of life and were shown to play essential roles, e.g., in intermediary metabolism and detoxification. In the genome of Sulfolobus solfataricus, five paralogs of the aldehyde dehydrogenases superfamily were identified, however, so far only the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) and alpha-ketoglutaric semialdehyde dehydrogenase (alpha-KGSADH) have been characterized. Detailed biochemical analyses of the remaining three ALDHs revealed the presence of two succinic semialdehyde dehydrogenase (SSADH) isoenzymes catalyzing the NAD(P)(+)-dependent oxidation of succinic semialdehyde. Whereas SSO1629 (SSADH-I) is specific for NAD(+), SSO1842 (SSADH-II) exhibits dual cosubstrate specificity (NAD(P)(+)). Physiological significant activity for both SSO-SSADHs was only detected with succinic semialdehyde and alpha-ketoglutarate semialdehyde. Bioinformatic reconstructions suggest a major function of both enzymes in gamma-aminobutyrate, polyamine as well as nitrogen metabolism and they might additionally also function in pentose metabolism. Phylogenetic studies indicated a close relationship of SSO-SSALDHs to GAPNs and also a convergent evolution with the SSADHs from E. coli. Furthermore, for SSO1218, methylmalonate semialdehyde dehydrogenase (MSDH) activity was demonstrated. The enzyme catalyzes the NAD(+)- and CoA-dependent oxidation of methylmalonate semialdehyde, malonate semialdehyde as well as propionaldehyde (PA). For MSDH, a major function in the degradation of branched chain amino acids is proposed which is supported by the high sequence homology with characterized MSDHs from bacteria. This is the first report of MSDH as well as SSADH isoenzymes in Archaea.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据