4.7 Article

Cell formation in group technology using constraint programming and Boolean satisfiability

期刊

EXPERT SYSTEMS WITH APPLICATIONS
卷 39, 期 13, 页码 11423-11427

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eswa.2012.04.020

关键词

Manufacturing cells; Machine grouping; Constraint programming; Boolean satisfiability

向作者/读者索取更多资源

Cell formation consists in organizing a plant as a set of cells, each of them containing machines that process similar types or families of parts. The idea is to minimize the part flow among cells in order to reduce costs and increase productivity. The literature presents different approaches devoted to solve this problem, which are mainly based on mathematical programming and on evolutionary computing. Mathematical programming can guarantee a global optimal solution, however at a higher computational cost than an evolutionary algorithm, which can assure a good enough optimum in a fixed amount of time. In this paper, we model and solve this problem by using state-of-the-art constraint programming (CP) techniques and Boolean satisfiability (SAT) technology. We present different experimental results that demonstrate the efficiency of the proposed optimization models. Indeed, CP and SAT implementations are able to reach the global optima in all tested instances and in competitive runtime. (c) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据