4.7 Article

A hybrid ant colony optimization technique for power signal pattern classification

期刊

EXPERT SYSTEMS WITH APPLICATIONS
卷 38, 期 5, 页码 6368-6375

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eswa.2010.11.102

关键词

Non-stationary power signals; TT-transform; Particle swarm optimization (PSO); Ant colony optimization (ACO); Hybrid ant colony optimization (HACO); Pattern classification

向作者/读者索取更多资源

This paper presents a novel clustering and pattern classification of power signal disturbances using a variant of S-transform, which is termed as a phase corrected wavelet transform. This variant is obtained by taking the inverse Fourier transform of S-transform and is known as time-time transform (TT-transform). The output from the TT-transform based power signal processing is a set of relevant features that is used for visual localization, detection, and disturbance pattern classification. The TT-transform is a method of dividing a primary time series into a set of secondary, time-localized time series, through use of a translatable, scalable Gaussian window. These secondary time series resemble ordinary windowed time series, except that higher frequencies are more strongly concentrated around the midpoint of the Gaussian, as compared with lower frequencies. In this paper the TT-transform is generalized to accommodate arbitrary scalable windows. The generalized TT-transform can be useful in resolving the times of event initiations when used jointly with a related time-frequency distribution, the generalized S-transform. The extracted features are the input to a fuzzy C-means clustering algorithm (FCA) to generate a decision tree for power signal disturbance pattern classification. To improve the pattern classification of the fuzzy C-means decision tree, the cluster centers are updated using a hybrid ant colony optimization technique (HACO). Further a comparative assessment of power signal disturbance pattern classification accuracy for different population based optimization approach like the genetic algorithm (GA) and particle swarm optimization technique are presented in this paper. The various computational simulations presented in this paper reveal significant improvement in the pattern classification accuracy, the average number of function evaluations and processing time, etc. (c) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据