4.7 Article

Gene selection and classification using Taguchi chaotic binary particle swarm optimization

期刊

EXPERT SYSTEMS WITH APPLICATIONS
卷 38, 期 10, 页码 13367-13377

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eswa.2011.04.165

关键词

Microarray data; Correlation-based feature selection; Taguchi-binary particle swarm optimization; K-nearest neighbor

向作者/读者索取更多资源

The purpose of gene expression analysis is to discriminate between classes of samples, and to predict the relative importance of each gene for sample classification. Microarray data with reference to gene expression profiles have provided some valuable results related to a variety of problems and contributed to advances in clinical medicine. Microarray data characteristically have a high dimension and a small sample size. This makes it difficult for a general classification method to obtain correct data for classification. However, not every gene is potentially relevant for distinguishing the sample class. Thus, in order to analyze gene expression profiles correctly, feature (gene) selection is crucial for the classification process, and an effective gene extraction method is necessary for eliminating irrelevant genes and decreasing the classification error rate. In this paper, correlation-based feature selection (CFS) and the Taguchi chaotic binary particle swarm optimization (TCBPSO) were combined into a hybrid method. The K-nearest neighbor (K-NN) with leave-one-out cross-validation (LOOCV) method served as a classifier for ten gene expression profiles. Experimental results show that this hybrid method effectively simplifies features selection by reducing the number of features needed. The classification error rate obtained by the proposed method had the lowest classification error rate for all of the ten gene expression data set problems tested. For six of the gene expression profile data sets a classification error rate of zero could be reached. The introduced method outperformed five other methods from the literature in terms of classification error rate. It could thus constitute a valuable tool for gene expression analysis in future studies. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据