4.7 Article

Nonlinear process monitoring based on maximum variance unfolding projections

期刊

EXPERT SYSTEMS WITH APPLICATIONS
卷 36, 期 8, 页码 11332-11340

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eswa.2009.03.042

关键词

Process monitoring; Dimensionality reduction; Kernel matrix learning; Linear regression; Maximum variance unfolding projections

资金

  1. National Natural Science Foundation of China [60421002]
  2. National High Technology R&D Program of China [2007AA04Z191]

向作者/读者索取更多资源

Kernel principal component analysis (KPCA) has recently proven to be a powerful dimensionality reduction tool for monitoring nonlinear processes with numerous mutually correlated measured variables. However, the performance of KPCA-based monitoring method largely depends on its kernel function which can only be empirically selected from finite candidates assuming that some faulty process samples are available in the off-line modeling phase. Moreover, KPCA works at high computational cost in the on-line monitoring phase due to its dense expansions in terms of kernel functions. To overcome these deficiencies, this paper proposes a new process monitoring technique comprising fault detection and identification based on a novel dimensionality reduction method named maximum variance unfolding projections (MVUP). MVUP firstly applies the recently proposed manifold learning method maximum variance unfolding (MVU) on training samples, which can be seen as a special variation of KPCA whose kernel matrix is automatically learned such that the underlying manifold structure of training samples is unfolded in the reduced space and hence the boundary of distribution region of training samples is preserved. Then MVUP uses linear regression to find the projection that best approximates the implicit mapping from training samples to their lower dimensional embedding learned by MVU. Simulation results on the benchmark Tennessee Eastman process show that MVUP-based process monitoring method is a good alternative to KPCA-based monitoring method. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据