4.6 Article

Aluminum Borate Coating on High-Voltage Cathodes for Li-Ion Batteries

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 162, 期 12, 页码 A2259-A2265

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.0161512jes

关键词

-

资金

  1. NASA's Space Power Systems Technology Development Program
  2. National Aeronautics and Space Administration

向作者/读者索取更多资源

Li-rich layered-layered nickel manganese cobalt oxides (LLNMC) of the type Li2MnO3-LiMO2 (M = Mn, Co, Ni) are promising cathode materials due to their higher specific capacities and discharge voltages compared to state of art materials. However, these materials have yet to exhibit adequate cycle life and power characteristics in practical cells, partly due to the instability of electrolytes at these high voltages. Thin coatings of inorganic materials such as Al2O3, AlPO4, and ALF(3) have been shown to minimize these degradation processes, especially on high voltage cathodes. Here, we report the use of a new aluminum borate-based coating material on the LLNMC cathode at high active mass loadings. AlBO3-coated cathodes demonstrate a sevenfold increase in lifetime compared to uncoated material, as well as higher specific discharge energies vs. analogous AlPO4-coated materials. SEM and TEM confirm the thin coatings of amorphous material. Detailed electrochemical studies including Tafel polarization, PITT, and Electrochemical Impedance Spectroscopy (EIS) show that the AlBO3 coating improves the kinetics of electron transfer. (C) The Author(s) 2015. Published by ECS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据