4.4 Article

Lagrangian coherent structures in the human carotid artery bifurcation

期刊

EXPERIMENTS IN FLUIDS
卷 46, 期 6, 页码 1067-1079

出版社

SPRINGER
DOI: 10.1007/s00348-009-0615-8

关键词

-

向作者/读者索取更多资源

The carotid artery bifurcation is known as a site of atheromatous plaque formation which is closely related to hemodynamics. To investigate the fluid mechanics inside the bifurcation, a transparent model of the carotid geometry was built to estimate the feasibility of using stereoscopic particle image velocimetry (PIV) in a complex three-dimensional geometry. As a first approach, steady inflow conditions are considered. Velocity data are acquired in cross-sectional planes and combined to yield the full three-dimensional velocity vector field in the region of the bifurcation. The finite-time Lyapunov exponent (FTLE) is used as a criterion to reveal the complex flow structure and is found to be particularly efficient in discriminating between reverse flow and recirculation regions. The Lagrangian criterion is also computed with time-resolved, two-component PIV measurements obtained by increasing the Reynolds number up to the onset of unsteadiness. The FTLE field produces in this case a detailed visualization of the instability development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据