4.6 Article

Pool boiling heat transfer in monoethyleneglycol aqueous solutions

期刊

EXPERIMENTAL THERMAL AND FLUID SCIENCE
卷 48, 期 -, 页码 177-183

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.expthermflusci.2013.02.021

关键词

Boiling; Bubble diameter; Bubble frequency; Nucleation site density; Heat transfer coefficient

资金

  1. Islamic Azad University - Mahshahr Branch

向作者/读者索取更多资源

Significant interest in formulation of pool boiling heat transfer in liquid mixtures can be found in the literature. In this article, it is aimed to validate the existing models and correlations specifically for boiling of water/monoethyleneglycol binary solution. In this investigation, boiling heat transfer coefficient, bubble departing diameter, bubble departing frequency and nucleation site density have been experimentally investigated in various concentrations and heat fluxes. The experimental data obtained in this investigation shows that the boiling heat transfer coefficients of the case study are much higher than the predicted values by major existing correlations and models. Furthermore, it is shown that the boiling heat transfer coefficient in mixtures of water/monoethyleneglycol is even higher than the ideal boiling heat transfer coefficient; i.e. inclusion of monoethyleneglycol in water significantly enhances the boiling heat transfer coefficient. We hypothesize that the enhancement in boiling heat transfer coefficient is related to bubble dynamics, which is not directly included in the existing models and correlation. A model is then proposed to predict the boiling heat transfer coefficient in water/monoethyleneglycol solution. Proposed formulation presents significantly improved performance compared to studied methods. (C) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据