4.6 Article

Infrared visualization of thermal motion inside a sessile drop deposited onto a heated surface

期刊

EXPERIMENTAL THERMAL AND FLUID SCIENCE
卷 35, 期 3, 页码 521-530

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.expthermflusci.2010.12.004

关键词

Sessile drops; Convection cells; Evaporation; Infrared camera; Thermal motion; Spectroscopy

资金

  1. CNES (French National Space Agency)

向作者/读者索取更多资源

Drop evaporation is a basic phenomenon but the mechanisms of evaporation are still not entirely clear. A common agreement of the scientific community based on experimental and numerical work is that most of the evaporation occurs at the triple line. However, the rate of evaporation is still predicted empirically due to the lack of knowledge of the governing parameters on the heat transfer mechanisms which develop inside the drop under evaporation. The evaporation of a sessile drop on a heated substrate is a complicated problem due to the coupling by conduction with the heating substrate, the convection/conduction inside the drop and the convection/diffusion in the vapor phase. The coupling of heat transfer in the three phases induces complicated cases to solve even for numerical simulations. We present recent experimental results obtained using an infrared camera coupled with a microscopic lens giving a spatial resolution of 10 mu m to observe the evaporation of sessile drops in infrared wavelengths. Three different fluids fully characterized, in the infrared wavelengths of the camera, were investigated: ethanol, methanol and FC-72. These liquids were chosen for their property of semi-transparency in infrared, notably in the range of the camera from 3 to 5 mu m. Thus, it is possible to observe the thermal motion inside the drop. This visualization method allows us to underline the general existence of three steps during the evaporating process: first a warm-up phase, second (principal period) evaporation with thermal-convective instabilities, and finally evaporation without thermal patterns. The kind of instabilities observed can be different depending on the fluid. Finally, we focus on the evolution of these instabilities and the link with the temperature difference between the heating substrate and the room temperature. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据