4.6 Article

Experimental investigation of evaporative heat transfer characteristics at the 3-phase contact line

期刊

EXPERIMENTAL THERMAL AND FLUID SCIENCE
卷 34, 期 8, 页码 1036-1041

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.expthermflusci.2010.02.014

关键词

3-Phase contact line; Meniscus; Micro-region; Heat transfer

资金

  1. European Space Agency (ESA)
  2. German science foundation (DFG) through Center of Smart Interfaces

向作者/读者索取更多资源

An experimental study is conducted to investigate the local heat flow at a solid-liquid-vapor contact line. A vertical channel of 600 mu m width is built using two parallel flat plates; a 10 mu m thick stainless steel heating foil forms a part of one of the flat plates. A liquid-vapor meniscus is formed between the plates due to capillary forces. In this study the fluid HFE7100 is evaporated inside the channel under steady state conditions. Two-dimensional microscale temperature fields at the back side of the heating foil are observed with a infrared camera with a spatial resolution of 14.8 mu m x 14.8 mu m. An in situ calibration procedure is applied. The measured local wall temperature difference between the contact line area and the bulk liquid is up to 12 K. The liquid front undergoes a slow oscillatory motion which can be attributed to the instability of evaporating 3-phase contact line. The local heat fluxes from the heater to the evaporating meniscus are calculated from the measured wall temperatures using an energy balance for each pixel element. The local heat fluxes at the contact line area are found to be about 5.4-6.5 times higher than the mean input heat fluxes at the foil. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据