4.3 Article

Ataxia telangiectasia mutated impacts insulin-like growth factor 1 signalling in skeletal muscle

期刊

EXPERIMENTAL PHYSIOLOGY
卷 98, 期 2, 页码 526-535

出版社

WILEY-BLACKWELL
DOI: 10.1113/expphysiol.2012.066357

关键词

-

资金

  1. National Institute of Child Health and Human Development (NICHD) through National Skeletal Muscle Research Center [R24HD050837]
  2. National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) [R15DK080437]
  3. Saint Louis University
  4. Pfizer
  5. Saint Louis University Monsanto Scholars Program

向作者/读者索取更多资源

Reports that ataxia telangiectasia mutated (ATM) is required for full activation of Akt raise the hypothesis that ATM plays a role in insulin-like growth factor 1 (IGF-1) signalling through the Akt/mammalian target of rapamycin (mTOR) pathway. Differentiated C2C12 cells harbouring either ATM-targeting short hairpin RNA (shRNA) or non-targeting shRNA and myotubes from a C2C12 lineage previously exposed to empty vector lentivirus were incubated in the presence or absence of 10 nm IGF-1 followed by Western blot analysis. Parallel experiments were performed in isolated soleus muscles from mice expressing only one functional ATM allele (ATM(+/-)) compared with muscles from wild-type (ATM(+/+)) mice. Insulin-like growth factor 1 increased phosphorylation of Akt S473, Akt T308 and p70 S6 kinase (S6K) in myotubes expressing non-targeting shRNA and in empty vector controls, but the IGF-1 effects were significantly reduced in myotubes with shRNA-mediated ATM knockdown. Likewise, IGF-1-stimulated phosphorylation of Akt S473, Akt T308, mTOR and S6K was lower in isolated soleus muscles from ATM(+/-) mice compared with muscles from ATM(+/+) mice. The ATM inhibitor KU55933 prevented stimulation of S6K phosphorylation in C2C12 myotubes exposed to IGF-1, suggesting that decreased IGF-1 action is not limited to chronic conditions of decreased ATM function. Stimulation of insulin receptor substrate 1 tyrosine 612 phosphorylation by IGF-1 was unaffected by ATM deficiency, though IGF-1 phosphatidylinositol 3-kinase activity tended to be lower in muscle from ATM haploinsufficient mice compared with wild-type muscle. The data suggest that ATM is a modulator of IGF-1 signalling downstream of insulin receptor substrate 1 in skeletal muscle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据