4.7 Article

Grafting of fetal brainstem 5-HT neurons into the sublesional spinal cord of paraplegic rats restores coordinated hindlimb locomotion

期刊

EXPERIMENTAL NEUROLOGY
卷 247, 期 -, 页码 572-581

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2013.02.008

关键词

Spinal cord injury; Transplantation; Serotonin; Locomotor movement

资金

  1. Nencki Institute (statutory)
  2. MSHE [N N404 134439]
  3. Canadian Institutes of Health Research (CIHR)
  4. Manitoba Spinal Cord Injury Research Committee (MSCIRC)

向作者/读者索取更多资源

In rodent models of spinal cord injury, there is increasing evidence that activation of the locomotor central pattern generator (CPG) below the site of injury with 5-hydroxytryptamine (5-HT) agonists improves locomotor recovery and restores coordination. A promising means of replacing 5-HT control of locomotion is to graft brainstem 5-HT neurons into the spinal cord below the level of the spinal cord injury. However, it is not known whether this approach improves limb coordination because recovery of coordinated stepping has not been documented in detail in previous studies employing this transplantation strategy. Here, adult rats with complete spinal cord transections at the T9/10 level were grafted with E14 fetal neurons from the medulla at the T10/11 vertebra level one month after injury. The B1, B2 and B3 fetal anlagen of brainstem 5-HT neurons, a grouping that included the presumed precursors of recently described 5-HT locomotor command neurons, were used in these grafts. EMG and video recordings of treadmill locomotion evoked by tail stimulation showed full recovery of inter- and intralimb coordination in the grafted rats. We showed, using systemically applied antagonists, that 5-HT2 and 5-HT7 receptors mediate the improved locomotion after grafting, but through actions on different populations of spinal locomotor neurons. Specifically, 5-HT2 receptors control CPG activation as well as motoneuron output, while 5-HT7 receptors contribute primarily to activity of the locomotor CPG. These results are consistent with the roles for these receptors during locomotion in intact rodents and in rodent brainstem-spinal cord in vitro preparations. (C) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据