4.7 Article

A neurophysiological insight into the potential link between transcranial magnetic stimulation, thalamocortical dysrhythmia and neuropsychiatric disorders

期刊

EXPERIMENTAL NEUROLOGY
卷 245, 期 -, 页码 87-95

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2012.10.010

关键词

Resting-state neural oscillations; Brain stimulation; Oscillatory brain activity; Pathophysiology; Frequency-dependent effects of rTMS; Cortical excitability

资金

  1. Ministry of Higher Education, Malaysia
  2. Universiti Sains Islam Malaysia

向作者/读者索取更多资源

Altered neural oscillations and their abnormal synchronization are crucial factors in the pathophysiology of several neuropsychiatric disorders. There is increasing evidence that the perturbation with an abnormal increase of spontaneous thalamocortical neural oscillations lead to a phenomenon termed Thalamocortical dysrhythmia (TCD) which underlies the symptomatology of a variety of neurological and psychiatric disorders including Parkinson's disease, schizophrenia, epilepsy, neuropathic pain, tinnitus, major depression and obsessive-compulsive disorder. In addition, repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neurophysiological tool that has been shown to both induce a modulation of neural oscillations and alleviate a wide range of human neuropsychiatric pathologies. However, little is known about the precise electrophysiological mechanisms behind the therapeutic effect of rTMS and its potential to improve abnormal oscillations across diverse neuropsychiatric disorders. Here we show, using combined rTMS and surface electroencephalography (EEG), a short lasting frequency-dependent rTMS after-effect on thalamocortical rhythmic interplay of low-frequency oscillations in healthy humans at rest. In particular, high-frequency rTMS (10 Hz) induces a transient synchronised activity for delta (5) and theta (0) rhythms thus mimicking the pathological TCD-like oscillations. In contrast rTMS 1 and 5 Hz have the opposite outcome of de-synchronising low-frequency brain rhythms. These results lead to a new neurophysiological insight of basic mechanisms underlying neurological and psychiatric disorders and a probable electrophysiological mechanism underlying the therapeutic effects of rTMS. Thus, we propose the use of rTMS and EEG as a platform to test possible treatments of TCD phenotypes by restoring proper neural oscillations across various neuropsychiatric disorders. Crown Copyright (C) 2012 Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据