4.7 Article

Disruption of Purkinje cell function prior to huntingtin accumulation and cell loss in an animal model of Huntington Disease

期刊

EXPERIMENTAL NEUROLOGY
卷 236, 期 1, 页码 171-178

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2012.04.015

关键词

Cerebellum; Gene expression; Motor impairment; Stereology; Glutamic acid decarboxylase 67; Calbindin; Parvalbumin; Loose patch electrophysiology

资金

  1. National Institutes of Health (NIH) [1R01NS070009-01, NS57098]

向作者/读者索取更多资源

Huntington Disease (HD) is a devastating neurological disorder characterized by progressive deterioration of psychiatric, motor, and cognitive function. Purkinje cells (PCs), the output neurons of the cerebellar cortex, have been found to be vulnerable in multiple CAG repeat disorders, but little is known about the involvement of PC dysfunction in HD. To investigate possible PC abnormalities, we performed quantitative real time PCR, Western blot analysis, and immunohistochemistry experiments to explore the changes in PC markers in the R6/2 mouse model of severe HD. There were reductions in the transcript and protein levels of the calcium-binding proteins parvalbumin and calbindin, as well as the enzyme glutamic acid decarboxylase 67. Immunohistochemistry supported these results, with the most substantial changes occurring in the PC layer. To determine whether the reductions in PC marker expression were due to cell loss, we performed stereology on both presymptomatic and end-stage R6/2 mice. Stereological counts indicated a significant reduction in PC number by end-stage but no change in presymptomatic animals (4 weeks of age). To assess cellular function prior to cell loss and symptom onset, we measured spontaneous firing in PCs from 4-week old animals and found a striking deficit in PC firing as indicated by a 57% decrease in spike rate. Interestingly, huntingtin inclusions were not widely observed in PCs until 12 weeks of age, indicating that soluble huntingtin and/or abnormalities in other cell types may contribute to PC dysfunction. Considering the roles for PCs in motor control, these data suggest that early PC dysfunction potentially contributes to motor impairment in this model of HD. (C) 2012 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据