4.7 Article

Mesenchymal stem cells induced to secrete neurotrophic factors attenuate quinolinic acid toxicity: A potential therapy for Huntington's disease

期刊

EXPERIMENTAL NEUROLOGY
卷 234, 期 2, 页码 417-427

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2011.12.045

关键词

Mesenchymal stem cells; Neurotrophic factors; Huntington's disease; Quinilinic acid; In vivo MRI

资金

  1. Hereditary Disease Foundation (HDF), USA
  2. The Israeli National Psychobiology Institute
  3. Herczeg Institute on Aging
  4. Tel-Aviv University, Israel
  5. Israel Science Foundation
  6. Clore Scholars Programme

向作者/读者索取更多资源

Huntington's disease (HD) is a hereditary, progressive and ultimately fatal neurodegenerative disorder. Excitotoxicity and reduced availability of neurotrophic factors (NTFs) likely play roles in HD pathogenesis. Recently we developed a protocol that induces adult human bone marrow derived mesenchymal stem cells (MSCs) into becoming NTF secreting cells (NTF+ cells). Striatal transplantation of such cells represents a promising autologous therapeutic approach whereby NTFs are delivered to damaged areas. Here, the efficacy of NTF+ cells was evaluated using the quinolinic acid (QA) rat model for excitotoxicity. We show that NTF+ cells transplanted into rat brains after QA injection survive transplantation (19% after 6 weeks), maintain their NTF secreting phenotype and significantly reduce striatal volume changes associated with QA lesions. Moreover, QA-injected rats treated with NTF+ cells exhibit improved behavior; namely, perform 80% fewer apomorphine induced rotations than PBS-treated QA-injected rats. Importantly, we found that MSCs derived from HD patients can be induced to become NTF+ cells and exert efficacious effects similarly to NTF+ cells derived from healthy donors. To our knowledge, this is the first study to take adult bone marrow derived mesenchymal stem cells from patients with an inherited disease, transplant them into an animal model and evidence therapeutic benefit. Using MRI we demonstrate in vivo that PBS-treated QA-injected striatae exhibit increasing T-2 values over time in lesioned regions, whereas T-2 values decrease in equivalent regions of QA-injected rats treated with NTF+ cells. We conclude that NTF cellular treatment could serve as a novel therapy for managing HD. (C) 2012 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据