4.7 Article

Neuroprotection by glutamate receptor antagonists against seizure-induced excitotoxic cell death in the aging brain

期刊

EXPERIMENTAL NEUROLOGY
卷 224, 期 1, 页码 207-218

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2010.03.013

关键词

Kainic acid; MK-801; NBQX; Neuronal damage; Hippocampus; Mouse strain

资金

  1. NIH [AG25508]
  2. Rose Hills Memorial Foundation

向作者/读者索取更多资源

We previously have identified phenotypic differences in susceptibility to hippocampal seizure-induced cell death among two inbred strains of mice. We have also reported that the age-related increased susceptibility to the neurotoxic effects of seizure-induced injury is regulated in a strain-dependent manner. In the present study, we wanted to begin to determine the pharmacological mechanism that contributes to variability in the response to the neurotoxic effects of kainate. Thus, we compared the effects of the NMDA receptor antagonist, MK-801 and of the AMPA receptor antagonist NBQX on hippocampal damage in the kainate model of seizure-induced excitotoxic cell death in young, middle-aged, and aged C57BL/6 and FVB/N mice, when given 90 min following kainate-induced status epilepticus. Following kainate injections, mice were scored for seizure activity and brains from mice in each age and antagonist group were processed for light microscopic histopathologic evaluation 7 days following kainate administration to evaluate the severity of seizure-induced injury. Administration of MK-801 significantly reduced the extent of hippocampal damage in young, mature and aged FVB/N mice, while application of NBQX was only effective at attenuating cell death in young and aged mice throughout all hippocampal subfields. Our results suggest that both NMDA and non-NMDA receptors are involved in kainate-induced cell death in the mouse and suggest that aging may differentially affect the ability of neuroprotectants to protect against hippocampal damage. Differences in the effectiveness of these two antagonists could result from differential regulation of glutamatergic neurotransmitter systems or ion channel specificity. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据