4.7 Article

Regulation of blood L-glutamate levels by stress as a possible brain defense mechanism

期刊

EXPERIMENTAL NEUROLOGY
卷 224, 期 2, 页码 465-471

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2010.05.009

关键词

Adrenaline; Isoproterenol; beta-Adrenoreceptor; Blood; Brain; CRF; L-Glutamate; Stress

资金

  1. Nella and Leon Benoziyo Center for Neurological Diseases, Braintact Ltd.
  2. Irwin Green Alzheimer's Research Fund
  3. Carl and Micaela Einhorn-Dominic Institute for Brain Research

向作者/读者索取更多资源

Isoflurane-anesthetized rats submitted to a closed head injury (CHI) display a significant decrease of their blood glutamate levels. Having demonstrated that a decrease of blood L-glutamate (glutamate) causes an increase of the driving force for a spontaneous brain-to-blood glutamate efflux, and consequently affords brain neuroprotection, we investigated here the possible mechanisms which can affect blood glutamate levels. Reasoning that the spontaneous decrease of blood glutamate levels post CHI could be part of a stress response, we observed that the stress involved in tail artery catheterization under isoflurane anesthesia does not affect blood glutamate levels. Investigating in naive rats the stress effectors, we found that corticotropin-releasing factor (CRF) significantly decreased blood glutamate levels. Pretreatment with antalarmine (a selective type-1 CRF receptor antagonist) occludes the CRF-mediated decrease in blood glutamate levels. In contrast, the adrenocorticotrophic hormone (ACTH) did not affect blood glutamate levels. Investigating the effectors of the sympathetic/adrenomedullary system, we observed that in naive rats, adrenaline but not noradrenaline decreased blood glutamate levels. Confirming the role of adrenaline, propranolol pretreatment (a non-selective beta-antagonist) prevented the spontaneous decrease of blood glutamate observed post CHI. On the strength of these results, we further observed that isoproterenol (a beta(1/2)-selective adrenoreceptor agonist) produced a marked sustained decrease in blood glutamate levels. These results suggest that stress induces a decrease of blood glutamate levels partly via the activation of peripheral CRF receptors and the activation of the beta-adrenoreceptors. We propose that this newly identified component of the stress response could be a peripherally mediated defense mechanism of the injured brain against the deleterious effects of excess glutamate. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据